
Double Integrals (Part I)
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1 Double Integrals Over Rectangles

f(x, y) is a two variable function defined on a closed rectangular region R =
[a, b] × [c, d]. Suppose f(x, y) ≥ 0, then the graph of f(x, y) is above the
xy-plane. Consider the solid that lies above R = [a, b]× [c, d] and under the
graph of f . We would like to compute its volume.

The strategy is to cut R into many smaller rectangular regions, and ap-
proximate the volume of each one by a cuboid, and finally sum them up.
When the cutting is finer and finer, the sum of the volume of these small
cuboid is closer and closer to the volume of the original solid.

We divide [a, b] into a = x0 < x1 < ... < xm = b and [c, d] into c = x0 <
x1 < ... < xn = d. The rectangular region R is thus divided into mn regions
Rij = [xi−1, xi]× [yj−1, yj], with area ∆Aij = ∆xi∆yj.

For each Rij, we choose a point (x∗ij, y
∗
ij) as representative point, then the

solid above Rij and below the graph of f(x, y) can be approximated by

f(x∗ij, y
∗
ij)∆xi∆yj

and if we sum up all these pieces, the volume of the solid is approximated by

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆xi∆yj

Now taking the limit as max ∆xi,max ∆yj → 0, if the limit exists, we define
it to be the double integral of f over the rectangular region R, and denote it
by ∫∫

R

f(x, y) dA = lim
max ∆xi→0,max ∆yj→0

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆xi∆yj
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If we define a more general volume, that is, if f(x, y) is a two variable
function (may not be nonnegative), we define the signed volume of the solid
bounded between the graph of the function and the xy-plane to be the volume
of the part above the xy-plane minus the volume of the part below the xy-
plane. In this way we extend the definition of double integral to a general
function f , and its value is the signed volume described above.

A function is called integrable if such limit exists.

Theorem 1. If f(x, y) is bounded and continuous except on a finite number
of curves on the region, then f is integrable on this region.

So many of the two variable functions that we are familiar with are inte-
grable on rectangular regions.

2 Iterated Integrals

f(x, y) is a function on two variables, and continuous on R = [a, b] × [c, d].

Define
∫ d

c
f(x, y) dy to be the integral with y as the variable, regarding x as

a constant. The result should be a function of x, denoted by

A(x) =

∫ d

c

f(x, y) dy

Then we integrate A(x) with respect to x to get∫ b

a

A(x) dx =

∫ b

a

(

∫ d

c

f(x, y) dy) dx

This form of integral on the right side is called an iterated integral. This
is an important construction because of the following theorem:

Theorem 2. (Fubini’s Theorem) If f is a continuous function on a rectangle
R = [a, b]× [c, d], then∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

More generally, this is also true when f(x, y) is bounded on R and discon-
tinuous only at a finite number of smooth curves.
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The proof the the above theorem is very deep in theory, but its intuition
is clear:∫∫

R

f(x, y) dA = lim
max ∆xi→0,max ∆yj→0

m∑
i=1

n∑
j=1

f(x∗i , y
∗
j )∆Aij

= lim
max ∆xi→0

m∑
i=1

( lim
max ∆yj→0

n∑
j=1

f(x∗i , y
∗
j )∆yj)∆xi

= lim
max ∆xi→0

m∑
i=1

(

∫ d

c

f(x∗i , y) dy)∆xi

=

∫ b

a

(

∫ d

c

f(x, y) dy) dx

Example 3. Evaluate
∫∫

R
xy dA, where R = [1, 2]× [3, 4]

∫∫
xy dA =

∫ 2

1

∫ 4

3

xy dy dx =

∫ 2

1

(
x

2
y2

∣∣∣∣4
3

) dx

=

∫ 2

1

7

2
x dx

=
7

4
x2

∣∣∣∣2
1

=
21
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Proposition 4. R = [a, b]× [c, d] is rectangular region.

1. If f(x, y) = g(x)h(y), then
∫∫

R
f(x, y) dA = (

∫ b

a
g(x) dx)(

∫ d

c
h(y) dy)

2.
∫∫

R
f(x, y) + g(x, y) dA =

∫∫
R
f(x, y) dA +

∫∫
R
g(x, y) dA

3.
∫∫

R
cf(x, y) dA = c

∫∫
R
f(x, y) dA

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫
R
g(x, y) dA

Example 5. Evaluate
∫∫

R
xy dA, where R = [1, 2]× [3, 4]

∫∫
xy dA = (

∫ 2

1

x dx)(

∫ 4

3

y dy) =
3

2
× 7

2
=

21

4
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